Fronto-striatal dysfunction and potential compensatory mechanisms in male adolescents with fragile X syndrome.

نویسندگان

  • Fumiko Hoeft
  • Arvel Hernandez
  • Sudharshan Parthasarathy
  • Christa L Watson
  • Scott S Hall
  • Allan L Reiss
چکیده

Response inhibition is an important facet of executive function. Fragile X syndrome (FraX), with a known genetic etiology (fragile X mental retardation-1 (FMR1) mutation) and deficits in response inhibition, may be an ideal condition for elucidating interactions among gene-brain-behavior relationships. Functional magnetic resonance imaging (fMRI) studies have shown evidence of aberrant neural activity when individuals with FraX perform executive function tasks, though the specific nature of this altered activity or possible compensatory processes has yet to be elucidated. To address this question, we examined brain activation patterns using fMRI during a go/nogo task in adolescent males with FraX and in controls. The critical comparison was made between FraX individuals and age, gender, and intelligent quotient (IQ)-matched developmentally delayed controls; in addition to a control group of age and gender-matched typically developing individuals. The FraX group showed reduced activation in the right ventrolateral prefrontal cortex (VLPFC) and right caudate head, and increased contralateral (left) VLPFC activation compared with both control groups. Individuals with FraX, but not controls, showed a significant positive correlation between task performance and activation in the left VLPFC. This potential compensatory activation was predicted by the interaction between FMR1 protein (FMRP) levels and right striatal dysfunction. These results suggest that right fronto-striatal dysfunction is likely an identifiable neuro-phenotypic feature of FraX and that activation of the left VLPFC during successful response inhibition may reflect compensatory processes. We further show that these putative compensatory processes can be predicted by a complex interaction between genetic risk and neural function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural substrates of executive dysfunction in fragile X-associated tremor/ataxia syndrome (FXTAS): a brain potential study.

Executive dysfunction in fragile X-associated tremor/ataxia syndrome (FXTAS) has been suggested to mediate other cognitive impairments. In the present study, event-related potentials and neuropsychological testing were combined to investigate the brain mechanisms underlying the executive dysfunction in FXTAS. Thirty-two-channel electroencephalography was recorded during an auditory "oddball" ta...

متن کامل

Obsessive-Compulsive Disorder and Hyperphagia in a Boy with Fragile X Syndrome: A Case Report

Objective: Fragile X syndrome is the second etiology for inherited mental retardation. It may concomitant with other psychiatric disorders. Intellectual disability (ID) is a state of functioning that typically begins in childhood and is characterized by limitations in intelligence and adaptive skills. We intend to introduce a male young patient with Fragile X syndrome and Obsessive-Compulsive d...

متن کامل

Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications

BACKGROUND The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson's disease, Huntington's disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette's syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits share 2 common...

متن کامل

گزارش یک مورد سندرم ایکس شکننده همراه با ناهنجاری انگشتان

  Fragile X Syndrome, the most common cause of inherited mental retardation, results from mutation in fragile X mental retardation gene (FMR1) on long arm of X chromosome, Xq27.3. Clinical features include moderate to severe mental retardation without neurologic deficit, long face, large ears, prominent jaw, macro-orchidism, attention deficit, behavior di...

متن کامل

White matter tract alterations in fragile X syndrome: preliminary evidence from diffusion tensor imaging.

Fragile X syndrome, the most common form of hereditary mental retardation, causes disruption in the development of dendrites and synapses, the targets for axonal growth in the central nervous system. This disruption could potentially affect the development, wiring, and targeting of axons. The current study utilized diffusion tensor imaging (DTI) to investigate whether white matter tract integri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human brain mapping

دوره 28 6  شماره 

صفحات  -

تاریخ انتشار 2007